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With the advance of machine learning technology and especially the explosive growth of big
data, federated learning, which allows multiple participants to jointly train a high-quality
global machine learning model, has gained extensive attention. However, in federated
learning, it has been proved that inference attacks could reveal sensitive information from
both local updates and global model parameters, which threatens user privacy greatly.
Aiming at the challenge, in this paper, a privacy-preserving and lossless federated learning
scheme, named CORK, is proposed for deep neural network. With CORK, multiple partici-
pants can train a global model securely and accurately with the assistance of an aggregation
server. Specifically, we first design a drop-tolerant secure aggregation algorithm FTSA,
which ensures the confidentiality of local updates. Then, a lossless model perturbation
mechanism PTSP is proposed to protect sensitive data in global model parameters.
Furthermore, the neuron pruning operation in PTSP can reduce the scale of models, which
thus improves the computation and communication efficiency significantly. Detailed secu-
rity analysis shows that CORK can resist inference attacks on both local updates and global
model parameters. In addition, CORK is implemented with real MNIST and CIFAR-10 data-
sets, and the experimental results demonstrate that CORK is indeed effective and efficient.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, the deep neural network (DNN) model has been widely applied and gained huge success in many fields
(e.g., natural language process [1], computer vision [2], human–machine game [3], and so on.), bringing great convenience to
people’s life. Meanwhile, due to explosive growth of data volume generated by distributed devices, coupled with privacy
concerns of data collection, the concept of federated learning has been introduced by Google [4], which essentially involves
training a high-quality global model over multiple participants while remaining data localized, as shown in Fig. 1. In partic-
ular, during each training round of federated learning, participants first perform a stochastic gradient descent (SGD) algo-
rithm locally on their training data to generate the local updates. After that, the local updates are further aggregated by
aggregation server to update the global model parameters.

Nevertheless, there are still many privacy issues in federated learning. Many previous research works have demonstrated
that the inference attacks could reveal sensitive information of participants from both local updates and global model
parameters [5,6]. On the one hand, local updates are derived from training data of participants, thus they contain massive
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Fig. 1. The architecture of federated learning.
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sensitive information. Only with analyzing model updates in just a few rounds, while without any auxiliary knowledge, the
aggregation server could infer a certain participant’s data information (i.e., membership, class representation, or property),
or even reconstruct its raw local training data [7–9]. On the other hand, since the DNN model appears to internally mine
useful information in training data, the global model parameters also include sensitive information. For example, by calcu-
lating the difference between consecutive global model parameters, an honest-but-curious participant can get the aggre-
gated local updates of other participants, then infer the membership and properties of their data in a certain training
round [10]. Therefore, there is an urgent need to design privacy-preserving federated learning schemes for the DNN model.

In order to solve the above privacy issues, plenty of privacy-preserving schemes have been proposed, which can mainly be
classified into two categories: based on secure aggregation (SA) or differential privacy (DP). Specifically, with an SA algo-
rithm, an aggregation server can only obtain the summation of multiple participants’ local updates, while it is not able to
see any concrete local update of a solo participant [11–16]. As a result, SA-based schemes can well protect the sensitive data
in local updates from the aggregation server, but it’s hard to prevent inference attacks on the global model parameters. In
addition to the SA algorithm, DP is a common method to protect data privacy in federated learning. In the popular differen-
tial privacy schemes, the local updates are perturbed randomly by participants at each round [17–20]. DP-based schemes can
provide strong privacy guarantees, but it inevitably reduces the accuracy of the trained model.

In this paper, we propose a privacy-preserving and lossless federated learning scheme for DNN, named CORK. With CORK,
multiple participants can collaborate to train a DNN model securely and accurately with the assistance of an aggregation
server. By combining our proposed drop-tolerant secure aggregation algorithm FTSA and lossless model perturbation mech-
anism PTSP, sensitive data in both local updates and global model parameters are protected well during training. Further-
more, the neuron pruning operation in PTSP can reduce the scale of models, which improves the computation and
communication efficiency significantly. Specifically, our contributions are the following:

� CORK protects sensitive data in both local updates and global model parameters. During training, the local updates are
encrypted by FTSA, which can keep confidential to the aggregation server. Besides, PTSP changes the orders and values
of global model parameters greatly, which makes an honest-but-curious participant impossible to infer others’ sensitive
data by comparing the consecutive global model parameters. Therefore, sensitive data are protected well from the infer-
ence attacks of aggregation server and other participants in CORK.
� CORK achieves lossless and drop-tolerant federated learning for DNN. In federated learning, a participant may drop out
midway due to connectivity or power constraints. In this regard, through applying the Shamir secret sharing in FTSA, even
if some participants drop out at a training round, it could still aggregate the local updates of remaining participants.
Moreover, in CORK, PTSP prunes and merges redundant neurons in the DNN model, which doesn’t cause a loss of model
accuracy.
� CORK is efficient in both computation and communication overhead. At each training round, the computation and com-
munication overhead is significantly reduced with the neuron pruning operation in PTSP. In addition, the evaluation on
real MNIST and CIFAR-10 datasets shows that our scheme is effective and efficient, which can be implemented in a real
environment.
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The rest of this paper is organized as follows. In Section 2, we define the models and propose our design goal. In Section 3, we
outline some building blocks in CORK. In Section 4, we introduce our proposed CORK detailedly, followed by the security
analysis and performance evaluation in Section 5 and Section 6. Finally, we review the related works in Section 7 and draw
a conclusion in Section 8.

2. Models, Security Requirements and Design Goal

In this section, we first outline the system model, threat model, and security requirements in our scenario. After that, we
identify our design goal.

2.1. System Model

In our system model, we mainly focus on how multiple participants collaboratively train a global DNN model securely
and accurately. Each participant is equipped with a computer or workstation, which can store their training data locally
and connect with the aggregation server. Specifically, the system consists of three parts: (1) trusted authority (TA); (2) aggre-
gation server (AS); (3) participants, as shown in Fig. 2.

� TA is a trusted authority, which is responsible for initializing the system by generating public parameters and distributing
secret keys for the aggregation server and corresponding participants. Afterward, TA will keep offline.
� AS is the aggregation server with sufficient computing resources but no training data, which works as a collaborator to
help participants train the DNN model. At each training round, AS is responsible for perturbing the global model param-
eters and aggregating the encrypted local updates from multiple participants.
� Participants represented as fP1; . . . ; Png are some institutions (e.g., school, bank, hospital, and so on) with their local train-
ing data. At each training round, each Pi 2 fP1; . . . ; Png generates its local update through executing an SGD algorithm on
its local training data, then send the encrypted local update to AS for updating the global model parameters.

2.2. Threat Model and Security Requirements

In our threat model, we consider that AS and participants are honest-but-curious (semi-honest). Specifically, at each
round of training, AS honestly performs the perturbation and aggregation operations, but attempts to infer the training data
of participants by analyzing the received local updates. Similarly, each participant executes the training and encryption pro-
cesses honestly but tries to infer other participants’ sensitive data from the global model parameters, which will be intro-
duced detailedly in Section 3.3. Besides, for practical considerations, AS could collude with one or more participants to
infer other participants’ sensitive information. It is noteworthy that there are still many other types of attacks (e.g., poison
attack, evasion attack, etc.) in federated learning. Since our CORK focuses on protecting the sensitive data of participants dur-
ing the model training process, these attacks are currently out of the scope of this paper and will be considered in future
work. Under the above threat model, CORK needs to satisfy the following security requirements.

� Ensuring the privacy of data in local updates. Generally, the local updates are derived by performing an SGD algorithm on a
participant’s local data. Once the local update of any participant is made public, its sensitive information will be leaked,
which may cause serious privacy problems. Therefore, during the training process, the local updates of participants
should be protected.
� Ensuring the privacy of data in global model parameters. If only the local updates are protected, through analyzing the global
model parameters, an honest-but-curious participant is still able to infer other participants’ sensitive information in every
training round. Therefore, we should also guarantee the privacy of global model parameters.

2.3. Design Goal

Under the system model and security requirements mentioned above, in order to achieve the goal of privacy-preserving
and lossless federated learning for DNN, the following three objectives should be satisfied.

� Ensure privacy-preservation during federated learning. Privacy is often a significant concern in federated learning. Once the
sensitive data are disclosed, it may lead to serious consequences. Therefore, CORK should protect participants’ sensitive
data in both local updates and global model parameters against inference attacks.
� Achieve lossless and drop-tolerant federated learning for DNN. In federated learning, training data are distributively stored in
multiple institutions,whichmaynot be independent and identically distributed. Therefore, in order to obtain a high-quality
DNNmodel, the correctness of local training andmodel aggregation should be first guaranteed. Then,we should ensure that
theneuronpruningand shufflingoperationsof PTSPwill not affect the accuracyofmodels.Moreover, due to the connectivity
or power constraints of participants in federated learning, CORK should be tolerant of participants dropping out.
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Fig. 2. System model under consideration.
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� Low computation and communication overhead. Although the computational capabilities of computers and workstations
are increasing rapidly, it is still difficult for participants to handle large-scale DNN model training. Meanwhile, since fed-
erated learning requires multi-round and long-term interaction, communication overhead and stability are still the bot-
tlenecks that affect the training efficiency. Considering the above factors, the proposed CORK should accomplish low
overhead in both computation and communication.

3. Preliminaries

In this section, we review some preliminaries related to our scheme.

3.1. Deep Neural Network and Neuron Pruning

The deep neural network [21,22] is a series of algorithms that aims to learn the characteristics of training data, which can
be used to achieve regression, clustering, classification, and prediction in many fields.

As shown in Fig. 3, a DNN model consists of an input layer, several hidden layers, and an output layer. The connection
between two neurons can be represented by a float number called weight, and the connection between two layers is a
weight matrix written as h.

In our scheme, we focus on the supervised training setting, which means that a piece of training data contains a feature
vector x and a label y. For example, given the training data x ¼ fx1; x2; x3; x4g as input n0, the final output n3 ¼ fo1; o2g is
obtained by repeatedly calculating the following formula (k ¼ 1;2;3):
nk ¼ f ðnk�1hk þ bkÞ;

where f is the activation function (e.g., Sigmoid, ReLU, etc.), bk is the bias unit, and nk is the output of the kth layer’s neurons.
After getting the final output, the loss function L is calculated as
Lðx; y; hÞ ¼ 1
2

X2

i¼1
ðoi � yiÞ2:
In order to find suitable weights that minimize the loss function L, the mini-batch SGD (MB-SGD) algorithm is used, which
updates the weights iteratively. At each iteration, the weights are updated as follows:
h h� a � 1jBj
X

x2B
OhLðx; y; hÞ;
where B is a batch of training data chosen randomly, a is the learning rate, and OhLðx; y; hÞ is the derivatives of the loss func-
tion to the weights. Finally, the above iterations terminate until the loss function L converges or until the maximum iteration
is reached.

In many practical applications, a DNN model usually contains millions of weights. To reduce the network complexity and
solve the over-fitting problem, neuron pruning [23] is proposed. The main method of neuron pruning is to prune redundant,
non-informative weights in a DNN model. Especially, Srinivas and Babu [24] propose a method to prune neurons without
knowing the distribution of data, which can ensure that the network’s overall structure keeps the same. We apply their
method as a building block of PTSP to perturb the global model parameters.
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Fig. 3. A DNN model composed of an input layer, two hidden layers and an output layer.
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3.2. Federated Averaging

Federated learning [4] is a distributed framework where multiple participants (e.g., different institutions) jointly train a
high-quality machine learning model while keeping their data localized. In this framework, the global model parameters are
maintained by the aggregation server. At each training round, every active participant independently computes a local
update based on its training data, then sends it to the aggregation server for updating the global model parameters.

In our scheme, we adopt an advanced federated learning algorithm, namely Federated Averaging [25], which is a practical
federated learning algorithm proposed for DNN, as shown in Algorithm1. Specifically, by combining model averaging and
SGD algorithms, federated averaging is suitable for training data that is not independently and identically distributed,
and it can greatly reduce the communication rounds.

Algorithm1: Federated Averaging

Parameters: number of clients K, batch size B, local training epoch E, learning rate a, client fraction C.
1: procedure SERVER
2: initialize w0.
3: for each round t ¼ 1;2; . . . do
4: m maxðC � K;1Þ.
5: St  random set of m clients.
6: for each client k 2 St do
7: wk

tþ1  CLIENT(k;wt).
8: end for

9: wtþ1  
PK

k¼1
nk
n wk

tþ1.
10: end for
11: end procedure
12: procedure CLIENT(k;w)
13: B  split Dk into batches of size B.
14: for each local epoch i from 1 to E do
15: for batch b 2 B do
16: w w� aOLðw; bÞ.
17: end for
18: end for
19: return w to server.
20: end procedure
3.3. Inference Attacks in Federated Learning

Althoughthere isno rawdata sharing in federated learning,whichmakesprogress toprotectparticipants’ local trainingdata,
the inference attacks could still exploit sensitive information of participants on local updates and global model parameters.

Since local updates are the inner products or convolutions of the errors and the data features, they could be used to infer
massive sensitive information of local data, such as class representatives, membership, and properties, even to recover the
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original training data. For example, the non-zero local updates of the embedding layer in natural language processing model
could reveal which words appear in the training data [10]. Besides, a method called Deep Leakage of Gradient (DLG) could
obtain both the features and labels of training data by observing the local updates in just a few iterations [8,9].

Besides, since DNN appears to learn many internal features of training data that are not apparently related to the main
tasks, global model parameters could also leak extra information about the unintended features of participants’ training data.
For example, when training a binary gender classifier, an honest-but-curious participant can save the snapshot of the global
model parameters, then infer when a specific person first appears in the photos by exploiting the difference between the
consecutive snapshots [10].
3.4. Paillier Cryptosystem

Paillier cryptosystem [26] is a novel probabilistic encryption based on the composite residuosity problem. In our scheme,
we take advantage of Paillier cryptosystem’s additive homomorphic property to construct our FTSA algorithm. Here, we
briefly review the Paillier cryptosystem:

� Key Generation: Select two large primes jpj ¼ jqj ¼ j, compute N ¼ p � q and k ¼ lcmðp� 1; q� 1Þ. Then, select a random
integer g 2 Z�N2 satisfying gcdðLðgk modN2Þ;NÞ ¼ 1, where LðuÞ ¼ ðu� 1Þ=N for u 2 Z�N2 . Finally, the public key is ðN; gÞ and
the corresponding secret key is k.
� Encryption: Given a message m, random number r 2 Z�N2 is chosen and the ciphertext can be computed as

c ¼ EpkðmÞ ¼ gmrN modN2.

� Decryption: Given a ciphertext c < N2, the plaintext m can be retrieved as m ¼ DskðcÞ ¼ LðckmodN2Þ
LðgkmodN2Þ modN2.

� Homomorphic Property: Given two ciphertexts Epkðm1Þ and Epkðm2Þ, we have Epkðm1ÞEpkðm2Þ ¼
gm1þm2 ðr1r2ÞN modN2 ¼ Epkðm1 þm2Þ.
4. Proposed Scheme

In this section, we present a detailed description of our CORK scheme, which mainly consists of four phases: (1) System
initialization; (2) Model perturbation and distribution; (3) Local training and encryption; (4) Secure aggregation and model
recovery. The overview of CORK is shown in Fig. 4. At first, TA generates and distributes public parameters and keys. Then, n
participants train the model iteratively with the assistance of AS. At each training round, AS perturbs and distributes the glo-
bal model parameters to participants. Then every participant independently calculates the local update on its local training
data and sends the encrypted local update to AS. After that, the local updates of multiple participants are aggregated as the
aggregation update, which is recovered by AS to obtain the new global model parameters. Finally, the above iterations ter-
minate until the global model converges or until the maximum round is reached.

For describing more clearly, we first introduce the main idea of CORK. Then, the drop-tolerant secure aggregation algo-
rithm FTSA and the lossless model perturbation mechanism PTSP are proposed, which are two building blocks of CORK.
Finally, we describe the four phases of CORK detailedly, followed by the correctness analysis. In Table 1, we list the common
notations used in CORK.
Fig. 4. Overview of CORK.
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4.1. Main Idea of CORK

In traditional federated learning schemes, the sensitive data could be inferred not only from local updates but also from
global model parameters, as mentioned in Section 3.3.

In CORK, by modifying the Paillier cryptosystem, we propose the drop-tolerant secure aggregation algorithm FTSA. It
achieves that AS cannot see the local update of a single participant but can still obtain the exact aggregation of multiple local
updates at each training round. Therefore, the sensitive data in the local updates are protected well against the honest-but-
curious AS.

In addition, to ensure the privacy of sensitive data in global model parameters, we design the lossless model perturbation
mechanism PTSP, which can change the orders and values of global model parameters greatly. With PTSP, it is impossible for
a participant to match the neuron positions of consecutive global models, and further obtain the aggregation of other par-
ticipants’ local updates. Therefore, CORK protects the sensitive data in the global model parameters, and a participant cannot
infer the sensitive data used in a certain training round.

4.2. Drop-tolerant Secure Aggregation Algorithm FTSA

In this section, we propose the FTSA algorithm detailedly, which is based on Paillier cryptosystem. And it consists of four
functions, namely Genð�Þ; Encð�Þ;Aggð�Þ, and Decð�Þ.

� FTSA:Genðj; t;ApÞ ! ðPP; SK; fSKPigi2Ap
Þ: At first, given a secure parameter j, TA generates parameters of the Paillier cryp-

tosystem, which consist of the secret key k and the public key ðg;NÞ. Next, TA chooses a big prime p0 and compute
h ¼ gp0 modN2. Finally, given a participant list Ap and a threshold t, TA announces the public parameters
PP ¼< j; t; S; g;h;N >, where S is the size of list Ap.
For AS, TA sends the secret key SK ¼< k; p0 >. For participants, TA first chooses t � 1 random integers a1; a2; . . . ; at�1 2 Zp,
and constructs a polynomial
f ðxÞ ¼ a1 � xþ a2 � x2 þ . . .þ at�1 � xt�1 modp: ð1Þ
Then, with a random number s 2 ZN , for each Pi 2 Ap, TA sends its secret key SKPi ¼ sq�f ðiÞ modN2.
� FTSA:EncðPP; SKPi ;xiÞ ! sxit: Given a message xi belonging to ZN , the ciphertext sxit can be computed as:
sxit ¼ gxi � hri � SK
ðS�1Þ!

Q
j2Af ;j–i

j
j�i

Pi
modN2; ð2Þ

where ri is a random integer that satisfies ri 2 ZN and jrij < j
2 and Af is the list of participants who are still active to join in

the following aggregation process. Moreover, ðS� 1Þ! is a pre-calculated constant value to ensure that the exponent of
SKPi is an integer.
� FTSA:AggðPP; fsxitgi2Af

Þ ! sxgt: After receiving fsxitgi2Af
, AS can aggregate the ciphertexts as:
sxgt ¼
Y

i2Af

sxit modN2: ð3Þ

� FTSA:DecðPP; SK; sxgtÞ ! xg: Given the aggregation update sxgt, AS can decrypt it through computing:

xg ¼
X

i2Af

xi ¼ Lðsxgt
k modN2Þ

Lðgk modN2Þ modN mod p0:

4.3. Model Perturbation Mechanism PTSP

In this section, we propose the PTSP mechanism, which consists of the perturbation function Pð�Þ and recovery function
Rð�Þ.

4.3.1. Perturbation Function
As shown in Algorithm2, function Pð�Þ can perturb the model parameters through two steps, namely, neuron pruning and

neuron shuffling. The input Np and Ns represent the numbers of neuron pruning and shuffling, which decide the degree of
model perturbation.

� Neuron pruning: For the lth layer, the neuron pruning operation computes the distances between all neuron pairs to form

a distance matrix n, then prune NðlÞp neurons iteratively. For each pruning, it first finds the minimum value in n, repre-
sented as minðnÞ. Then, the corresponding index of minðnÞ is written as ðm;nÞ, which shows that the mth and nth neurons
196



J. Zhao, H. Zhu, F. Wang et al. Information Sciences 603 (2022) 190–209
are the most similar in the lth layer. After that, it removes the nth neuron and merges it to themth neuron via deleting the

nth column in Wl, updating the mth row in Wlþ1 as W ðm;�Þ
lþ1 = W ðm;�Þ

lþ1 + W ðn;�Þ
lþ1 , and deleting the nth row in Wlþ1. Finally, the

matrix n is updated for the next pruning by removing the mth column and row and recalculating the nth column.

� Neuron shuffling: After finishing NðlÞp prunings, the neurons in the lth layer is further perturbed by neuron shuffling oper-

ation, which shuffles the neurons for NðlÞs times. Specifically, every shuffling exchanges the pth and qth neurons randomly

by performing W ð�;pÞ
i $W ð�;qÞ

i and W ðp;�Þ
iþ1 $W ðq;�Þ

iþ1 , then adds the random pair ðp; qÞ to record RðlÞs for recovery. Finally, func-
tion Pð�Þ returns the perturbed model Wp and shuffling records Rs.

In order to describe our perturbation function Pð�Þ more clearly, the changes in the DNN model and weight matrix can be
observed respectively in Fig. 5, where the solid line, dotted line, and red shapes mean remaining, removed, and merged neu-
rons and weights respectively, which shows the orders and values of model parameters are changed greatly by function Pð�Þ.

4.3.2. Recovery Function
Similarly, given perturbed Wp, function Rð�Þ can recover it to the complete model Wg . For the lth layer, Rð�Þ firstly recov-

ers the orders of neurons based on record RðlÞs . Then, according to the numbers of pruned neurons NðlÞp , function Rð�Þ fills Wl

and Wlþ1 with random vectors, where columnsðWlÞ denotes the total number of columns in matrix Wl. Finally, the recovered
model parameter Wg is returned.

Algorithm2: Model Perturbation Mechanism PTSP

Parameters: model parameter Wg ;Wp ¼ fW0;W1; . . . ;Whg, pruning number Np ¼ fNð1Þp ; . . . ;NðhÞp g, shuffling number

Ns ¼ fNð1Þs ; . . . ;NðhÞs g, shuffling record Rs ¼ fRð1Þs ; . . . ;RðhÞs g.
1: function P( Wg ;Np;Ns)
2: for l ¼ 1;2; . . . ;h do
3: Compute the distance matrix n in the lth layer.

4: for p ¼ 1;2; . . . ;NðlÞp do .neuron pruning
5: ðm;nÞ  indexðminðnÞÞ.
6: Delete W ð�;nÞ

l .

7: Wðm;�Þ
lþ1 = Wðm;�Þ

lþ1 + Wðn;�Þ
lþ1 .

8: Delete Wðn;�Þ
lþ1 .

9: Update n.
10: end for

11: for s ¼ 1;2; . . . ;NðlÞs do .neuron shuffling

12: Generate a random pair ði; jÞ, and add to RðlÞs .

13: Wð�;iÞ
l $Wð�;jÞ

l , Wði;�Þ
lþ1 $Wðj;�Þ

lþ1.
14: end for
15: end for
16: Wp  Wg .
17: return Wp;Rs

18: end function
19: function RðWp;Rs;NpÞ
20: for l ¼ 1;2; . . . ;h do

21: for ðp; qÞ 2 RðlÞs do

22: Wð�;pÞ
l $Wð�;qÞ

l , Wðp;�Þ
lþ1 $Wðq;�Þ

lþ1 .
23: end for

24: for f ¼ 1;2; . . . ;NðlÞp do
25: Choose a random integer n < columnsðWlÞ.
26: Insert random vectors into Wð�;nÞ

l and Wðn;�Þ
lþ1 .

27: end for
28: end for
29: Wg  Wp.
30: return Wg

31: end function
197



Fig. 5. Model perturbation function of PTSP.

Table 1
Notations of CORK.

Notations Definition

Ap The list of active participants.
j Security parameter.
t Threshold.
PP Public parameters.
SK; SKPi

Secret keys of AS and Pi .
Wg Global model parameters.
Af The list of participants who have completed training.
xi The local update of Pi .
xg Aggregation update.
sxit The encrypted local update of Pi .
sxgt Encrypted aggregation update.
Np ;Ns Pruning number and shuffling number.
Rs Shuffling record.

W ði;�Þ
l ;Wð�;jÞ

l
The ith row and jth column of Wl .

Wp Perturbed global model parameters.
Di The local training data of Pi .
ci The encryption parameter of Pi .
Nd ;Ni Total number of data, number of Pi ’s local data.
a;B; E Learning rate, batch size and local training epoch.

J. Zhao, H. Zhu, F. Wang et al. Information Sciences 603 (2022) 190–209
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4.4. Description of CORK

In this section, we describe the four phases of CORK. In order to describe more clearly, we show the protocol process in
Algorithm3.

4.4.1. System Initialization
In this phase, TA first generates and distributes public parameters and keys to AS and corresponding Pi. Then, AS initial-

izes the parameters in model training.

� Step 1. System Parameter Initialization
At first, TA generates the participant list Ap ¼ fP1; P2; � � � ; Png, and the number of Pi’ local data is denoted as Ni.
Then, TA selects secure parameter j and threshold tðt < nÞ, where t is the minimum number of participants to complete
model training.
Finally, TA executes function FTSA:Genðj; t;ApÞ to compute public parameters PP and generates secret keys SK and SKPi for
AS and Pi respectively, where i ¼ 1;2; � � � ;n.
� Step 2. Training Parameter Initialization
AS first generates global model parameters Wg randomly. Then, AS selects the pruning number Np and shuffling number
Ns as the parameters of PTSP. Finally, AS sets the hyperparameters of model training, such as learning rate a, batch size B,
and local training epoch E.

After the system initialization, TA transfers to offline and will not join the model training process. Then n participants and AS
perform the following training process iteratively.

4.4.2. Model Perturbtion and Distribution
At each training round, AS first executes the above model perturbation function PðWg ;Np;NsÞ to obtain the perturbed glo-

bal model parameters Wp. Then AS sends Wp to each Pi 2 Ap and waits for their training completed.

4.4.3. Local Training and Encryption
In this phase, every Pi first performs local training. After that, AS sends the encryption parameters to participants who

have completed training. Finally, every Pi 2 Af sends the encrypted local updates to AS.

� Step 1. Local Data Training
After receiving the perturbed global model parametersWp, participant Pi 2 Ap uses its training data Di to trainWp locally.
Through E-epoch MB-SGD training, Pi obtains the local update xi.
� Step 2. Encryption Parameter Distribution
When Step 1 is completed, Pi sends the training completion signal to AS. Once AS receives more than t signals from par-
ticipants who have completed local data training, it adds them to a new list Af . Then, AS announces the total number of

data Nd ¼
P

Pi2Af
Ni and sends the encryption parameter ci ¼

Q
Pj2Af ;j–i

j
j�i for each Pi 2 Af ,

In particular, even if some participants fail to complete the local training or send a training completion signal due to
equipment failure or connection interruption, as long as the number of remaining participants exceeds t, the rest of
the training process can still proceed successfully.
� Step 3. Local Update Encryption
After receiving ci, Pi performs FTSA:Enc ðPP; SKPi ;xiÞ function to calculate encrypted local update sxit and sends it to AS.

4.4.4. Secure Aggregation and Model Recovery
In this phase, AS aggregates the encrypted local updates of multiple participants as the aggregation update, which is fur-

ther recovered to Wg for the next training round.

� Step 1. Secure Aggregation
After receiving all encrypted local updates from Pi 2 Af , AS executes function FTSA:AggðPP; sxitPi2Af

Þ to aggregate the

encrypted local updates as sxgt, then computes FTSA:DecðPP; SK; sxgtÞ to get aggregation update xg .
� Step 2. Model Recovery
Finally, AS executes functionRðxg ;Rs;NpÞ to recover new global model parameters Wg , and updates the list of active par-
ticipants Ap for the next training round.
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Algorithm3: Protocol Process of CORK

Input: local training data fDigPi2Ap
.

Output: convergence model Wg .
TA:
1: Form Ap ¼ fP1; P2; . . . ; Png.
2: Select j and tðt < nÞ.
3: ðPP; SK; fSKPigi2Ap

Þ  FTSA:Genðj; t;ApÞ
4: Announce PP.
5: Send SK to AS.
6: Send SKPi

to Pi 2 Ap.
AS:
7: Initialize Wg randomly.
8: Select Ns;Np;a;B, and E.
9: while Wg doesn’t converge do
10: Wp;Rs  PðWg ;Np;NsÞ.
11: Send Wp to Pi 2 Ap.
12: Af ¼ fg.
Pi 2 Ap:
13: Receive Wp from AS.

14: Train xi  Ni
Nd
�MB-SGDðE;a;B;Wp;DiÞ.

15: Send training completion signal to AS.
AS:
16: Receive signal and add Pi to Af .
17: Assert jAf jP t.
18: for Pi 2 Af do

19: Calculate ci ¼
Q

Pj2Af ;j–i
j

j�i.

20: Send ci to Pi.
Pi 2 Af :
21: Receive ci from AS.
22: Calculate sxit ¼ FTSA:EncðPP; SKPi

;xiÞ.
23: Send sxit to AS.
AS:
24: Receive sxit from Pi.
25: end for
26: Calculate sxgt ¼ FTSA:AggðPP; fsxitgPi2Af

Þ.
27: Decrypt xg ¼ FTSA:DecðPP; SK; sxgtÞ.
28: Wg  Rðxg ;Rs;NpÞ.
29: Ap  Af .
30: end while

4.5. Correctness Analysis of CORK

In order to verify the correctness of CORK, we prove the following three theorems.

Theorem 1. At each training round, AS can obtain the correct aggregation update xg ¼
P

Pi2Af
xi.
Proof. According to Eq. (2), local update xi is encrypted as
sxit ¼ gxi � hri � SKðS�1Þ!ciPi
modN2:
Then, AS aggregates all encrypted local updates fsxitgPi2Af
as
sxgt ¼
Q

Pi2Af

sxit modN2

¼ g

P
Pi2Af

xi

� hr � s
q
P

Pi2Af

ðS�1Þ!f ðiÞci
modN2;
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where r ¼P
Pi2Af

ri, ci ¼
Q

Pj2Af ;j–i
j

j�i, and f ð�Þ is the polynomial generated by TA, as shown in Eq. (1).

Then, based on Shamir secret sharing and Lagrange interpolation formula, if the number of participants in Af is more than
threshold t,
sxgt ¼ g

P
Pi2Af

xi

� hr � sq�ðS�1Þ!�ð0 modpÞ

¼ g

P
Pi2Af

xi

� hr � skN;
ð4Þ
where k 2 Zp.
Finally, AS decrypts sxgt as
xg ¼ Lðsxgt
k modN2Þ

Lðgk modN2Þ modN mod p0

¼ ð P
Pi2Af

xi þ rp0Þ modp0

¼ P
Pi2Af

xi:

ð5Þ
Theorem 2. Even though some participants drop out during training, as long as the number of remaining participants is
greater than t, the overall model training can proceed normally.
Proof. (Sketch) At the beginning of each training round, AS sends the global model parameters to all active participants.
Once AS could receive more than t participants’ local updates, according to Eq. (4) and Eq. (5), the aggregation update can
be computed and decrypted correctly. And when entering the next training round, the remaining participants reorganize
the list Ap. Similarly, more than t local updates received can be aggregated correctly. And the rest may be deduced by anal-
ogy. Therefore, as long as the number of remaining participants is greater than t, the overall model training can proceed
normally.
Theorem 3. The accuracy of the generated global model is not affected by the PTSP mechanism.
Proof. (Sketch) Function Pð�Þ in PTSP consists of two steps, neuron pruning, and neuron shuffling. At each training round, the
neuron pruning operation removes and merges some neurons of the global model. Every pruning finds the two most similar
neurons and merges them into one neuron. Since similar neurons are redundant and non-informative in the DNN model,
neuron pruning doesn’t affect the accuracy of the models. Besides, the neuron shuffling operation randomly shuffles the
orders of neurons of the global model. According to the structure of the DNN model shown in Section 3.1, the training pro-
cess is independent of the orders of neurons. So neuron shuffling doesn’t affect the accuracy of the models either. In sum-
mary, function Pð�Þ in PTSP doesn’t destroy the overall structure of the neural network and doesn’t reduce the accuracy of the
model at each training round.
5. Security Analysis

In this section, we analyze the security of CORK. Specifically, corresponding to the threat model and security require-
ments discussed in Section 2, we mainly focus on protecting the sensitive data in global model parameters and local updates
from inference attacks.

5.1. Against the inference attack of AS

At each training round, AS can receive the local updates from participants and obtain the unperturbed global model
parameters. On the one hand, from global model parameters, AS cannot analyze any sensitive information since AS doesn’t
have any auxiliary training data, which is proved in [10]. On the other hand, the local updates available to AS are encrypted in
CORK. Therefore, in order to prove that CORK can resist the inference attack of AS, we just need to prove that AS cannot
decrypt a single encrypted local update.
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Theorem 4. During each training round, AS cannot decrypt sxit to obtain the local update xi.
Proof. (Sketch) In FTSA algorithm, we first split the public parameter N into multiple f ðiÞs for Pi in Ap by using the Shamir
secret sharing. Then, the secret key of Pi is calculated as
SKPi ¼ sq�f ðiÞ modN2:
Finally, the local update of Pi is encrypted with SKPi as
sxit ¼ gxi � hri � SKðS�1Þ!ciPi
modN2:
According to the Paillier cryptosystem, only when the third term in the above equation is recovered to the form like pN; sxit
can be decrypted with SK, where p is an arbitrary integer. As a result, the secret key SK of Paillier cryptosystem cannot
decrypt ciphertexts encrypted with SKPi .

However, according to the Shamir secret sharing, when the local updates of more than t � 1 participants are aggregated,
the encrypted aggregation update is calculated as
sxgt ¼ g

P
Pi2Af

xi

� hr � skN modN2:
It can obviously be seen that the parameter N is recovered in the third term. According to Paillier cryptosystem, AS can
decrypt it with SK to get the plaintext model parameters xg . Therefore, with our FTSA, SK can only be used to decrypt
the aggregation update, where local updates of more than t � 1 participants are aggregated, but not a single encrypted local
update.
5.2. Against the inference attack of a participant

During each training round, if a participant could get the unperturbed global model parameters, it can get the aggregated
local updates of others by calculating the difference between consecutive global model parameters, then it could infer other
participants’ sensitive information.

But in CORK, the global model parameters sent by AS are perturbed by our PTSP. As shown in Algorithm2, model pertur-
bation function Pð�Þ first prunes and merges some neurons of the global model, then shuffles the orders of neurons.

Detailedly, as shown in Fig. 5, the dotted line rectangles represent the removed weight parameters, which is impossible to
be recovered after neuron pruning operation. And the red rectangles represent the merged weight parameters, whose values
are the sum of two or more weights. As a result, it is also impossible to be recovered and it cannot be used to match the
neuron positions of consecutive models. Besides, although there are very few remaining weights represented by the solid
line rectangles, their values in consecutive models are also be changed by the training algorithm. Moreover, after the neuron
shuffling operation, the positions of neurons are exchanged randomly. In short, the orders and values of global model param-
eters are changed significantly, which cannot be recovered by the participants.

Therefore, an honest-but-curious participant cannot match the positions of the same neurons in consecutive global mod-
els. As a result, it cannot get the aggregation of others’ local updates, and our scheme can protect the sensitive data against
the inference attack of an honest-but-curious participant mentioned in Section 3.3.

5.3. Against the inference attack of collusive AS and participants

If AS and some honest-but-curious participants collude to infer other honest participants’ sensitive data, they can control
AS’s secret key SK and some honest-but-curious participants’ secret key fSKPigPi2Ac

, where Ac is the list of collusive partic-

ipants. To ensure that CORK can resist the collusive inference attack, we need to prove that they cannot decrypt a single local
update of any participant as long as jAcj < t.

Theorem 5. The encrypted local update sxit cannot be decrypted with SK and fSKPi
gPi2Ac

when jAcj < t.
Proof. (Sketch) The local update of a participant is encrypted as
sxit ¼ gxi � hri � SKðS�1Þ!ciPi
modN2:
Based on Paillier cryptosystem, only when the exponent of the third term is recovered to public parameter N, sxit can be
decrypted with SK.
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However, according to the Shamir secret sharing, only when the number of SKPi is equal to or more than t, we can recover
the exponent of the third term to N and decrypt sxit.

Therefore, if jAcj < t, the number of SKPi
is less than t, and the encrypted local update sxit cannot be decrypted.
6. Performance Evaluation

In this section, we evaluate and analyze the performance of our CORK in terms of accuracy, computation cost, and com-
munication overhead, and make a comparison with a multiparty deep learning scheme called /MDL [12]. Based on asyn-
chronous optimization, homomorphic encryption, and threshold secret sharing, /MDL can ensure that participants learn
the global model only if a sufficient number of local updates are aggregated. Specifically, the ElGamal encryption is used
in /MDL to achieve the aggregation of encrypted local updates. Moreover, based on the Shamir secret sharing, the aggrega-
tion process can also tolerate participant dropping out, but the aggregation server can obtain the global model parameters
only when it has been decrypted by all active participants.

6.1. Evaluation Environment

In order to measure the performance of CORK, we perform our experiments in Python 3.7 on a workstation running Win-
dows 10 system with Intel Core i5-9400H 2.50 GHz CPU and 24.0 GB RAM, and we use multiple processes to simulate dif-
ferent parts in CORK. Besides, to make the comparison between our CORK and /MDL more intuitive and convincing, we also
implement /MDL in the same experimental environment. Meanwhile, the handwritten digits recognition (MNIST) [27] and
image recognition (CIFAR-10) [28] datasets are used as the benchmark datasets to evaluate the model accuracy, and the syn-
thetic datasets with different sizes are generated to test the factors affecting the computation cost and communication over-
head. The details of the two real datasets are described as follows.

� The MNIST dataset consists of 60000 training and 10000 testing data of the handwritten digit images from 0 to 9. The
digits are size-normalized and centered in a fixed-size 28� 28 image, and the output size is 1� 10. We divide 60000
training data evenly to 100 participants, and each participant obtains 600 training data. Each participant performs 5-
epoch MB-SGD at each training round, and the learning rate and batch size are set to 0:01 and 32 respectively.
� The CIFAR-10 dataset contains 60000 color images in 10 classes (e.g., bird, frog, ship, etc.), with 6000 images per class. The
dataset is divided into five training batches and one test batch, each with 10000 data. Moreover, the input and output size
of each data is 32� 32� 3 and 1� 10 respectively. We divide 50000 training data evenly into 100 participants, and each
participant obtains 500 training data. Each participant performs 3-epoch MB-SGD at each training round, and the learning
rate and batch size are set to 0:1 and 32 respectively.

The goal of our task with MNIST and CIFAR-10 datasets is to train DNN models that can recognize 10 different handwritten
digits and image classifications. The model architecture in both MNIST and CIFAR-10 tasks is a fully-connected DNN with
two hidden layers containing 256 neurons, and the rectified linear unit (ReLU) is used as the activation function.

6.2. Accuracy

To evaluate the model accuracy of CORK, we perform model training when the number of participants n is 20;50, and 80.
And for the training of a fixed participant number, we compare the convergence curves when the pruning number Np is set to
0;50;80, and 100 (for simplicity, we prune the same number of neurons in every layer, and a pruning number of 0 means
that the model is not be pruned, which is equivalent to the model training with federated averaging). Since the shuffling
number Ns will not have any impact on model training, we set it to a fixed value of 1000. Besides, the model accuracy is
measured by the probability of correct prediction on the testing dataset.

The experiment results are shown in Fig. 6. The figures (a) to (c) are the model convergence curves for different numbers
of participants with the MNIST dataset, and the figures (d) to (f) are the corresponding curves with the CIFAR-10 dataset. By
comparing the convergence of the models with the same datasets, we find that the accuracy of the convergence models will
raise with the increase of participant numbers. And the model convergence curves with different pruning numbers are
shown in a single subfigure. For example, in Fig. 6a, we observe that the model accuracy of Np ¼ 50;80 is higher than the
model accuracy without pruning, and it is slightly lower than the model accuracy without pruning when Np ¼ 100, which
shows our CORK will hardly affect the model accuracy when compared with the federated averaging. Furthermore, we find
that the model converges faster when the pruning operation is added to the model training. In other words, the model in
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Fig. 6. Model accuracy of CORK.

Table 2
Accuracy of Convergence Models for Different Datasets, Participant Numbers, and Pruning Numbers

dataset participant number pruning number

0 50 80 100

MNIST 20 95.16% 95.31% 95.32% 95.13%
50 96.65% 96.69% 96.78% 96.46%
80 97.08% 97.25% 97.30% 96.97%

CIFAR-10 20 44.28% 44.42% 44.15% 43.78%
50 48.95% 49.06% 48.97% 45.75%
80 50.05% 50.60% 48.91% 47.36%
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CORK converges faster than in federated averaging. In order to show the experimental results more clearly, the accuracy of
convergence models can be seen in Table 2.

6.3. Computation Cost

Next, we analyze and evaluate the computation cost of CORK for both AS and participants, and compare the evaluation
result to /MDL.

6.3.1. Theoretical Analysis
In our analysis, we ignore some simple computations, because they have little effect on the computation cost. Besides,

since the MB-SGD algorithm is executed over plaintext, the computation cost of it is not considered. As a result, we only con-
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Table 3
Computation Cost Comparison in Theoretical Analysis.

CORK /MDL

AS Pc � Smððn� 1Þsm2 þ sm1 þ se2Þ Smð3ðn� 1Þsm1 þ se1Þ
Pi Pc � Smð3se2 þ 2sm2Þ Smðsm1 þ 4se1Þ

Fig. 7. Computation cost comparison in experimental evaluation.
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sider the time spent on two kinds of time-consuming computations: modular multiplication and modular exponentiation.
For simplicity, we set that modular multiplications in ZN and ZN2 cost sm1 and sm2 respectively, and modular exponentiations
in ZN and ZN2 cost se1 and se2 respectively. In addition, consistent with the above, we use n to represent the number of train-
ing participants. And Sm represents the size of model parameters, Pc means model compression rate caused by our PTSP.

At each training round of CORK, participants encrypt their local updates through FTSA algorithm. And for each participant,
the time cost is Pc � Sm � ð3se2 þ 2sm2Þ. Then, AS aggregates these encrypted local updates, which costs Pc � Sm � ðn� 1Þ � sm2.
Besides, the decryption operation costs Pc � Sm � ðsm1 þ se2Þ. So the total cost of AS is Pc � Sm � ððn� 1Þ � sm2 þ sm1 þ se2Þ.

For /MDL, every participant encrypts its local update through a two-step calculation at each training round. In the first
step, the time cost is Sm � ðsm1 þ 3se1Þ. And in the second step, Sm � se1 is cost. So the total cost of each participant is
Sm � ðsm1 þ 4se1Þ. And for AS, it also takes two steps to aggregate the local updates. In the first step, the time cost is
Sm � ððn� 1Þ � sm1 þ se1Þ. And in the second step, Sm � 2ðn� 1Þ � sm1 is cost. So AS’s total time cost is Sm � ð3 � ðn� 1Þ � sm1 þ se1Þ.

We compare the theoretical computation cost between our CORK and /MDL in Table 3. From the table, we can see that
for both AS and Pi, the computation cost of CORK for a single parameter is lower than /MDL. Besides, since CORK prunes the
global model by neuron pruning operation at each training round, the size of the model parameters is smaller than /MDL. In
CORK, the pruning Sm rate is usually lower than 70%, so the computation cost is much less than /MDL. In general, CORK is
more efficient than /MDL in computation cost.

6.3.2. Experimental Evaluation
We also evaluate the actual computation cost of CORK and /MDL, and plot the experimental results in Fig. 7. Specifically,

we evaluate the conditions when security parameter j ¼ 1024 and 2048 respectively, the number of participants n ¼ 80, and
the size of global model parameters Sm varying from 10000 to 50000. Besides, in CORK, we set a conservative compression
rate Pc ¼ 0:7.

By observing the experimental results, we find that the computation cost of both CORK and /MDL linearly increases with
the model size. But CORK is more efficient than /MDL, and it means that our scheme is more practical in application.

6.4. Communication Overhead

We analyze and evaluate the communication overhead of CORK in this section, and make a comparison with /MDL.

6.4.1. Theoretical Analysis
In the analysis of communication overhead, same as above, Sm represents the size of model parameters, Pc means model

compression rate caused by pruning operation in PTSP, j is the security parameter, and n is the number of participants.
Besides, we set that a single plaintext model parameter costs f bits.
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Table 4
Communication Overhead Comparison in Theoretical Analysis.

CORK /MDL

AS n � fðSm � Pc þ 1Þ Sm � nðfþ 2jÞ
Pi Sm � Pc � 2j Sm � 2j

Fig. 8. Communication overhead comparison in experimental evaluation.
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At each training round of CORK, AS sends the perturbed global model parameters to each participant, which needs
Sm � Pc � n � f bits. And each participant returns its encrypted local update, which costs Sm � Pc � 2j bits. Besides, the encryption
parameters sent by AS costs additional n � f bits. Therefore, the communication overhead of AS and a single participant is
n � fðSm � Pc þ 1Þ bits and Sm � Pc � 2j bits respectively.

At each training round of /MDL, AS firstly sends the global model parameters to each participant, which costs Sm � n � f
bits. Then the return encrypted local update from each participant costs Sm � 2j bits. Besides, to decrypt the aggregation
update, /MDL needs to communicate additional Sm � n � 2j bits. So the communication of AS and a single participant costs
Sm � nðfþ 2jÞ bits and Sm � 2j bits respectively.

We compare the theoretical communication overhead between our CORK and /MDL in Table 4. From the table, for both
AS and Pi, we see that our communication overhead is less than /MDL even without the neuron pruning operation. And after
pruning, our communication overhead is reduced by at least 30% on the original overhead. Therefore, CORK is more efficient
than /MDL in communication overhead.
6.4.2. Experimental Evaluation
We also estimate the actual communication overhead of CORK and /MDL, and plot the experimental results in Fig. 8.

Specifically, we set security parameters j ¼ 1024 and 2048 respectively, the number of participants n ¼ 80, the length of
a single plaintext model parameter f ¼ 32 bits, and the size of global model parameters Sm varying from 10000 to 50000.
Besides, in CORK, we set a conservative compression rate Pc ¼ 0:7.

From the experimental result, we can find that the communication overhead linearly raises with the increase of the model
size in both our CORK and /MDL. But the slope of CORK is much smaller than that of /MDL, which means that CORK is more
suitable for the training of large models.
7. Related Work

In this section, we introduce some related works about privacy-preserving federated learning for DNN. And we classify
the existing schemes into two categories: based on SA [29,12,13,30–33,16] or DP [34,18,35,36,19,20].
7.1. Privacy-preserving Federated Learning via SA

The SA algorithm can achieve that the aggregation server obtains the aggregation of participants’ data without knowing
their individual data.
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Table 5
Function Comparison between CORK and Other Schemes.

[12] [13] [7] [32] [18] CORK

Protected global model � � U � U U

Protected local update U U U U U U

Drop-tolerant U U � U � U

Lossless U U � U � U

High efficiency � U U U U U
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Chan et al. [29] proposed an algorithm to achieve privacy-preserving data aggregation with an untrusted aggregator,
which can efficiently resist user failure and support dynamic joins and leaves. Zhang et al. [12] proposed an SA algo-
rithm for model parameters based on additive homomorphic cryptosystem and threshold secret sharing technology,
which is still available when a few participants drop out. Corrigan et al. [31] presented an efficient SA algorithm based
on the secret-shared non-interactive proofs, which can achieve a least-squares regression on high-dimensional data. Xu
et al. [32] designed a secure and verifiable aggregation algorithm based on double-masking protocol and proof of integ-
rity. It can not only achieve SA but also allow participants to verify the integrity of the aggregation result. By utilizing
masking encryption, Zhang et al. [16] designed a SA protocol to compute the product of n numbers privately and effi-
ciently. Moreover, SA can also be achieved by using trusted execution environment (TEE), which is designed by Lie et al.
[30].

SA-based schemes don’t affect the accuracy of models and can provide a high privacy guarantee; however, in these
schemes, the local training of participants still proceed on the plaintext global model parameters, and they cannot prevent
the inference attack of an honest-but-curious participant.

7.2. Privacy-preserving Federated Learning via DP

The DP mechanism can prevent any participant from trying to infer the sensitive data of others by exploiting the global
model parameters, which is achieved by adding random noises on local updates to hide any single participant’s
characteristics.

Abadi et al. [18] proposed a differential private SGD algorithm by adding additive noises to the local updates and develop
an advanced analysis method of privacy budget. Mohassel et al. [35] proposed a distributed privacy-preserving machine
learning framework based on the local DP mechanism. In the client–server asynchronous communication mode, high-
quality machine learning models can be trained while satisfying DP. Pihur et al. [36] proposed a privacy-preserving time ser-
ies data aggregation scheme according to distributed DP mechanism. The scheme realizes the secure aggregation of time ser-
ies data by disturbing the data of multiple participants in different time series. Bhowmick et al. [19] designed an optimal
local differential private mechanism for large-scale statistical learning by limiting the ability of adversaries. Li et al. [20] pro-
posed a personalized local differentially private mechanism in meta-learning, which can provide provable learning guaran-
tees in convex settings.

DP-based schemes can afford strong privacy guarantees, but it inevitably reduces the accuracy of the trained models due
to the added noises.

Different from the above schemes, our proposed CORK achieves privacy-preserving and lossless federated learning for
DNN. On the one hand, different from secure aggregation schemes, CORK can protect sensitive data well in both local updates
and global model parameters from inference attacks. On the other hand, compared with the DP-based schemes, CORK
doesn’t cause a loss of model accuracy. Detailedly, we compare the functions between our CORK and other existing schemes
in Table 5.
8. Conclusion

In this paper, we proposed CORK, a privacy-preserving and lossless federated learning scheme for DNN. Based on our pro-
posed drop-tolerant secure aggregation algorithm FTSA, on the one hand, CORK can ensure that local updates of participants
are confidential to AS, on the other hand, could keep the normal training process even though some participants drop out.
Besides, by applying our lossless model perturbation mechanism PTSP, under the premise of lossless model accuracy, a par-
ticipant cannot obtain the aggregation update of others from the perturbed global model parameters. Finally, detailed secu-
rity analysis shows that CORK can protect sensitive data well against the inference attacks of AS, participants, and their
collusion, and extensive experiments are performed to show the efficiency of CORK in both computation and communication
overhead.
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[4] J. Konecný, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon, Federated learning: Strategies for improving communication efficiency, CoRR abs/
1610.05492. arXiv:1610.05492..

[5] N. Papernot, P.D. McDaniel, A. Sinha, M.P. Wellman, Sok: Security and privacy in machine learning, EuroS&P, IEEE (2018) 399–414, https://doi.org/
10.1109/EuroSP.2018.00035.

[6] L. Lyu, H. Yu, Q. Yang, Threats to federated learning: A survey, CoRR abs/2003.02133. arXiv:2003.02133..
[7] L.T. Phong, Y. Aono, T. Hayashi, L. Wang, S. Moriai, Privacy-preserving deep learning via additively homomorphic encryption, IEEE Trans. Inf. Forensics

Secur. 13 (5) (2018) 1333–1345, https://doi.org/10.1109/TIFS.2017.2787987.
[8] L. Zhu, S. Han, Deep leakage from gradients, in: NeurIPS, Morgan Kaufmann, 2019, pp. 14747–14756. doi:10.1007/978-3-030-63076-8_2..
[9] B. Zhao, K.R. Mopuri, H. Bilen, idlg: Improved deep leakage from gradients, CoRR abs/2001.02610. arXiv:2001.02610..
[10] L. Melis, C. Song, E.D. Cristofaro, V. Shmatikov, Exploiting unintended feature leakage in collaborative learning, in: IEEE Symposium on Security and

Privacy, IEEE, 2019, pp. 691–706, https://doi.org/10.1109/SP.2019.00029.
[11] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical secure aggregation for federated

learning on user-held data, CoRR abs/1611.04482. arXiv:1611.04482..
[12] X. Zhang, S. Ji, H. Wang, T. Wang, Private, yet practical, multiparty deep learning, in: ICDCS, IEEE Computer Society, 2017, pp. 1442–1452. doi:10.1109/

ICDCS.2017.215..
[13] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage, A. Segal, K. Seth, Practical secure aggregation for privacy-

preserving machine learning, in: CCS, ACM, 2017, pp. 1175–1191. doi:10.1145/3133956.3133982..
[14] F. Wang, H. Zhu, R. Lu, Y. Zheng, H. Li, Achieve efficient and privacy-preserving disease risk assessment over multi-outsourced vertical datasets, IEEE

Trans. Dependable Secur. Comput. doi:10.1109/TDSC.2020.3026631..
[15] F. Wang, H. Zhu, R. Lu, Y. Zheng, H. Li, A privacy-preserving and non-interactive federated learning scheme for regression training with gradient

descent, Inf. Sci. 552 (2021) 183–200, https://doi.org/10.1016/j.ins.2020.12.007.
[16] X. Zhang, X. Chen, H. Yan, Y. Xiang, Privacy-preserving and verifiable online crowdsourcing with worker updates, Inf. Sci. 548 (2021) 212–232, https://

doi.org/10.1016/j.ins.2020.10.010.
[17] R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in: CCS, ACM, 2015, pp. 1310–1321. doi:10.1145/2810103.2813687..
[18] M. Abadi, A. Chu, I.J. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep learning with differential privacy, in: CCS, ACM, 2016, pp. 308–

318.
[19] A. Bhowmick, J.C. Duchi, J. Freudiger, G. Kapoor, R. Rogers, Protection against reconstruction and its applications in private federated learning, CoRR

abs/1812.00984. arXiv:1812.00984..
[20] J. Li, M. Khodak, S. Caldas, A. Talwalkar, Differentially private meta-learning, CoRR abs/1909.05830. arXiv:1909.05830..
[21] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015) 85–117, https://doi.org/10.1016/j.neunet.2014.09.003.
[22] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, E. Prouff, Privacy-preserving classification on deep neural network, IACR Cryptol. ePrint Arch. (2017)

1–18, http://eprint.iacr.org/2017/035.
[23] S.J. Hanson, L.Y. Pratt, Comparing biases for minimal network construction with back-propagation, in: D.S. Touretzky (Ed.), NIPS, Morgan Kaufmann,

1988, pp. 177–185. doi:10.5555/2969735.2969756..
[24] S. Srinivas, R.V. Babu, Data-free parameter pruning for deep neural networks, in: BMVC, BMVA Press, 2015, pp. 31.1–31.12. doi:10.5244/C.29.31..
[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-efficient learning of deep networks from decentralized data, CoRR abs/

1602.05629. arXiv:1602.05629..
[26] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: EUROCRYPT, Vol. 1592 of Lecture Notes in Computer Science,

Springer, 1999, pp. 223–238. doi:10.1007/3-540-48910-X_16..
[27] Y. LeCun, The mnist database of handwritten digits., http://yann.lecun.com/exdb/mnist/ (1998)..
[28] A. Krizhevsky, V. Nair, G. Hinton, The cifar-10 dataset., http://www.cs.toronto.edu/kriz/cifar.html (2014)..
[29] T.H. Chan, E. Shi, D. Song, Privacy-preserving stream aggregation with fault tolerance 7397 (2012) 200–214. doi:10.1007/978-3-642-32946-3_15..
[30] D. Lie, P. Maniatis, Glimmers: Resolving the privacy/trust quagmire, in: HotOS, ACM, 2017, pp. 94–99. doi:10.1145/3102980.3102996..
[31] H. Corrigan-Gibbs, D. Boneh, Prio: Private, robust, and scalable computation of aggregate statistics, in: NSDI, USENIX Association, 2017, pp. 259–282.

doi:10.5555/3154630.3154652..
[32] G. Xu, H. Li, S. Liu, K. Yang, X. Lin, Verifynet: Secure and verifiable federated learning, IEEE Trans. Inf. Forensics Secur. 15 (2020) 911–926, https://doi.

org/10.1109/TIFS.2019.2929409.
208

https://doi.org/10.1109/MCI.2018.2840738
https://doi.org/10.1016/j.neucom.2010.12.041
https://doi.org/10.1016/j.neucom.2010.12.041
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/EuroSP.2018.00035
https://doi.org/10.1109/EuroSP.2018.00035
https://doi.org/10.1109/TIFS.2017.2787987
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1016/j.ins.2020.12.007
https://doi.org/10.1016/j.ins.2020.10.010
https://doi.org/10.1016/j.ins.2020.10.010
http://refhub.elsevier.com/S0020-0255(22)00404-2/h0090
http://refhub.elsevier.com/S0020-0255(22)00404-2/h0090
http://refhub.elsevier.com/S0020-0255(22)00404-2/h0090
https://doi.org/10.1016/j.neunet.2014.09.003
http://refhub.elsevier.com/S0020-0255(22)00404-2/h0110
http://refhub.elsevier.com/S0020-0255(22)00404-2/h0110
https://doi.org/10.1109/TIFS.2019.2929409
https://doi.org/10.1109/TIFS.2019.2929409


J. Zhao, H. Zhu, F. Wang et al. Information Sciences 603 (2022) 190–209
[33] X. Zhang, X. Chen, J.K. Liu, Y. Xiang, Deeppar and deepdpa: Privacy preserving and asynchronous deep learning for industrial iot, IEEE Trans. Ind.
Informatics 16 (3) (2020) 2081–2090, https://doi.org/10.1109/TII.2019.2941244.

[34] C. Dwork, Differential privacy: A survey of results, in: TAMC, Vol. 4978, Springer, 2008, pp. 1–19. doi:10.1007/978-3-540-79228-4_1..
[35] P. Mohassel, Y. Zhang, Secureml: A system for scalable privacy-preserving machine learning, in: IEEE Symposium on Security and Privacy, IEEE

Computer Society, 2017, pp. 19–38. doi:10.1109/SP.2017.12..
[36] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang, R. Zeng, Differentially-private draw and discard machine learning, CoRR abs/

1807.04369. arXiv:1807.04369..
209

https://doi.org/10.1109/TII.2019.2941244

	CORK: A privacy-preserving and lossless federated learning scheme for deep neural network
	1 Introduction
	2 Models, Security Requirements and Design Goal
	2.1 System Model
	2.2 Threat Model and Security Requirements
	2.3 Design Goal

	3 Preliminaries
	3.1 Deep Neural Network and Neuron Pruning
	3.2 Federated Averaging
	3.3 Inference Attacks in Federated Learning
	3.4 Paillier Cryptosystem

	4 Proposed Scheme
	4.1 Main Idea of CORK
	4.2 Drop-tolerant Secure Aggregation Algorithm FTSA
	4.3 Model Perturbation Mechanism PTSP
	4.3.1 Perturbation Function
	4.3.2 Recovery Function

	4.4 Description of CORK
	4.4.1 System Initialization
	4.4.2 Model Perturbtion and Distribution
	4.4.3 Local Training and Encryption
	4.4.4 Secure Aggregation and Model Recovery

	4.5 Correctness Analysis of CORK

	5 Security Analysis
	5.1 Against the inference attack of AS
	5.2 Against the inference attack of a participant
	5.3 Against the inference attack of collusive AS and participants

	6 Performance Evaluation
	6.1 Evaluation Environment
	6.2 Accuracy
	6.3 Computation Cost
	6.3.1 Theoretical Analysis
	6.3.2 Experimental Evaluation

	6.4 Communication Overhead
	6.4.1 Theoretical Analysis
	6.4.2 Experimental Evaluation


	7 Related Work
	7.1 Privacy-preserving Federated Learning via SA
	7.2 Privacy-preserving Federated Learning via DP

	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	References


